Cleanroom Software Engineering

« Harlan Mills (Linger, Dyer, Poore), IBM, 1980

* Analogy with electronic component
manufacture

» Use of statistical process control features
» Certified software reliability

* Improved productivity; zero defects at
delivery

6/18/2007 © 2007, Spencer Rugaber 1

Key Features

» Usage scenarios; statistical modeling
* |Incremental development and release

« Separate development and
acceptance testing

* No unit testing or debugging

— Instead, formal reviews with verification
conditions

6/18/2007 © 2007, Spencer Rugaber

Cleanroom Projects

Table 1.
Selected sample of Cleanrnom

Proiecs-
(Al other peojects known ta author repost substantial mprovenmemits o quatity and productivicy.)

with renise and new Ada
design languags

(Adaand ADLY .

Applicd
SYear technalogies Implementation Results
1380 Siepwise refimcree 01 Censas, 25 BLOC (Pageal) + Mo fGilure ever found
Funcdonal verification + Programmer received gold medal
. from Baldridge
1983 Funegonal verification Whechwriter, 53 KLOC, = Millions o wsers
Inspecrions nrec processors = Mo Eilure sver foand
(10 Funcyonal verificaion Space shutde, 500 R1LOWC # Low defeen ever entire fAtostion
Lonspecions = Mo defeet in any Dighe
= Work received MASA' s Caalior Award
1987 Cleanroom enginecring Flight conorel, 33 KLGC (Jovial)., * Completed ahead of schedule
three Increments- # 3 & erram KLOC before any execucian
= Frror-fx effort reduced by a factor of fve
1988 Cleannoam eogineering Commercial product. 82 KLSC (PLAT r Certificarion westing failure e
of 3.4 Eilursss KLOC
» Theployment Failures of 0.1 /KLOL
& Productivity of 740 fines man-month
195 Parnal Cleanroom Batetlite oneral, ML DC (Forman) » Cemification testing £rooc (i
ergineening of 33 failures /KL
+ « Hlpercent improverment io quali
* Product viky of 734 lites /man-rocnih
= Bl-poreenl improveracnt in producovicy
1930 CleanToom engineering Research project, 12 KLOC + Certified vo 0.9978 vith 989 test cases; 36

Faiiures found during certification {20
logic errors. or LT ernora/ KLOC

Defect Rates

« Traditional
— Unit testing: 25 faults / KLOC
— System testing: 25/ KLOC
— Inspections: 20 - 50/ KLOC
* Cleanroom
— < 3.5/ KLOC delivered

— Average 2.7 /| KLOC between first
execution and delivery

6/18/2007 © 2007, Spencer Rugaber

6/18/2007

Basic Technologies

. Incremental Development

Box-Structured Specification

Function-theoretic
verification

Statistical usage testing

© 2007, Spencer Rugaber

1. Incremental Development

« Typical system < 100KLOC

* Increment: 2 - 15KLOC

« Team size < 14

 Each increment End-to-End

« Overlapped development of increments

« 12 - 18 weeks from beginning of
specification to end of test

 Partitioning is difficult and critical

6/18/2007 © 2007, Spencer Rugaber

2. Formal Specification

» Box-structured design
— Black box: stimulus-response
— State box: formal model of system state
— Clear box: hierarchical refinement

* Program functions

 Verification properties of control
structures

6/18/2007 © 2007, Spencer Rugaber

Box-Structured
Specification and Design

« Black Box: stimulus / condition / response;
organized into tasks; Z has been used for
specification; top-down, stepwise refinement;
concurrency supported

« State Box: data / history view; model oriented

« Clear Box: procedural control (sequence,
alternation, iteration, concurrent; contains
nested black boxes)

« Box Definition language
6/18/2007 © 2007, Spencer Rugaber

State Boxes
(Model-based Formal Specification)

 Description of system state in terms of domains
(data structures without memory limitations

— Sets, sequences, records, lists, maps, relations
» Specification of state invariant

« Specification of operations
— Name
— Arguments with domains
— Validity condition (precondition)
— Effect on state (postcondition)

« Each operation must maintain the invariant

6/18/2007 © 2007, Spencer Rugaber

3. Function-Theoretic Verification

* |In Cleanroom, constructed programs can be
checked by a parser for syntax errors, but
may not be executed by the developer

— No debugging = cheap and predictable

* Verification is performed by a team review
driven by a set of verification conditions
— Questions to ask about the program code
— Specific questions are asked about each kind of
control structure
* Productivity: 3 - 5 x improvement in
verification over debugging

6/18/2007 © 2007, Spencer Rugaber 10

Formal Inspections

* Although program proving is always an option
this involves intensive work requiring
mathematical sophistication

* An alternative, used by Cleanroom software
engineering, is to structure a team code
inspection in terms of program functions and
verification conditions and then undertake an
informal review confirming all verification
conditions are satisfied

6/18/2007 © 2007, Spencer Rugaber

11

Functional Verification Steps

. Starting condition: program is specified by pre and post conditions

. Program is parsed into prime programs

— Prime program decomposition: parse program control flow into nested
single entry/exit constructs (SESES)

— Usual SESEs are sequence, conditional, iteration

. Proceeding top down, determine the program function for all
SESEs

— Program function: Description of the function of a prime program
— Assertion placed before and after each SESE

. Define verification conditions for each program point

— Verification Conditions: things to check for each SESE

. Inspect, answering all verification conditions

6/18/2007 © 2007, Spencer Rugaber 12

Program Function

« Conditions under which the program can
legally execute (preconditions)

* Expression of the effect of program execution
on the state of the system (postconditions)

« Expressed in terms of the program's input
arguments, return value, instance variables,
global variables, and side effects on the
environment (disk writes, printing, etc.) but
not local program variables

6/18/2007 © 2007, Spencer Rugaber 13

Program Parse

* Modern programming languages support the concept of
nested blocks

— A block is normally enclosed in braces or keyword pairs
(begin-end)
 In structured programs (programs without GOTO
statements), the nesting is always well formed

— That is, there is only ever one way for control to enter the block
and one way to exit. That is, they have the property of being
single-entry, single exit (SESE)

— Programs with GOTOs can be handled using special methods

* The process of determining the SESEs for a program

involves parsing its control flow graph.
6/18/2007 © 2007, Spencer Rugaber 14

4’ 4> Sequential Composition

Typical
SESEs

— > Conditional Composition

-

Iterative Composition

v

6/18/2007 © 2007, Spencer Rugaber 15

Composition of SESEs

« Each SESE can be thought of as being
itself a small program with its own program
function

* The overall program function is the logical
composition of the program functions of its
constituent SESEs

* The lowest level SESE is the single
assignment statement

6/18/2007 © 2007, Spencer Rugaber 16

Verification Conditions

* |If we were proving a program correct, we would
construct the proof by composing the proofs of
each of the SESEs

 |Instead of a proof, Cleanroom uses an informal
review that examines each program statements
to determine its logical validity

 |n particular, each type of statement has a set of
questions that should be asked about it every
time that it occurs in the program

* There are three ways of composing SESEs

— Sequence, conditional and iteration
6/18/2007 © 2007, Spencer Rugaber 17

Sequence

* The simplest control structure is a sequence
of two other statements or control structures

* There is one verification condition per
sequence:

— Do the constituent statements together accomplish
the sequence’s goal?

* This idea can readily be extended to three or
more constituent statements

6/18/2007 © 2007, Spencer Rugaber 18

Sequential Composition

1.

|s the post assertion of the sequence
equivalent to the logical composition of
the first part followed by second part?

6/18/2007 © 2007, Spencer Rugaber

19

Conditional

 An if-then-else has two arms

— Does each arm acting by itself accomplish the
control structure’s post condition, assuming the
control structure's precondition and that the tested
condition is true (or false)?

e Tf-thenistreated as if-then-else with a
null arm

6/18/2007 © 2007, Spencer Rugaber 20

Conditional

2.Does taking the t rue branch imply the
post assertion?

— The predicate of the conditional can be
assumed to be true

3.Does taking the false branch imply the

post assertion?
— The predicate can be assumed to be false

6/18/2007 © 2007, Spencer Rugaber 21

lteration

* There are three questions to ask about an
iterative construct such as a while loop:
— Does it terminate in all circumstances?

— Does it accomplish its purpose when it does not
execute?

— Does it accomplish its purpose when its body is
executed followed by its own execution?

« for loops and repeat loops can be defined
In terms of while loops

6/18/2007 © 2007, Spencer Rugaber 22

lteration

4.Does the loop terminate?

5.1f the predicate is false, is the post
assertion equivalent to the pre assertion?

6.lf the predicate is true, is the post

assertion of the loop equivalent to the post
assertion of the body followed by the post
assertion of the loop?

— Recursive!

— You may assume the predicate is true

6/18/2007 © 2007, Spencer Rugaber 23

Implications

* As teams become more experience in
Cleanroom, then begin to write their
programs more directly

* This typically results in very small
program segments with few control
structures each

 Example: 3300 lines = 600 control
structures, 1000 correctness
conditions

6/18/2007 © 2007, Spencer Rugaber

24

4. Statistical Usage Testing

Certification of reliability
Process control
Cost-effective orientation

Guidelines for test completion (desired
reliability reached) or redesign (too many
failures found)

Stratification mechanism for dealing with
critical situations

But questions exist on how to feed back the
results of testing to the development team

6/18/2007 © 2007, Spencer Rugaber 25

Cost-Effective Testing

Software Faihares for nine major m;p.?:dll;m clamriFied fHrom mre to freques:
Kare * Fregqueny
Group ; x 3 4 5 & 7 %
MTTF {vears 5 00} | 5RO S{N} {58 5 138 5 1.5%
Percent faifures
an chass for product L JiR E78 .3 5.0 i B 07
3 M3 80 18.2 9 4.5 33 1.5 .7
1 3317 oh.5 18.4] 87 6.5 28 k4 0.4
EEE 283 1.7 119 44 28 0.3 Dl
3 2 o, B 184 94 4.4 LR b4 0n7
& L 4] AE. i lE.5 56 A .5 {r.3
! Mn Bt Bl [R5 LAY 4.5 I f.d (16
B uy el R B 0.5 e i4 1.1
e 3.2 EEN Hid 128 b P9 {5 {H
Average percenlage 334 Zg |87 106 : 23 1.4 4
Litlures B e o e s A e oo
Probabilioy of 2 fture L |
forr thas Frequency TRY 373 ERERY O G.a79 123 0187 023t (3. 3003

~

Testing Process

« Usage distribution models
— From competitors, earlier versions, analysis
« Markov usage chain
— State transition probability matrix
« Statistics
— I (proportion of time spent in each state)
— n (number of states visited before a given state is reached)
— s (number of tests needed to reach a state).
« Random test generation
— Design required
» Test execution and test chain generation, including failure states
« Statistics
— R (reliability)
— MTBF (mean time between failures)
— D (divergence of test chain from usage chain)

6/18/2007 © 2007, Spencer Rugaber 27

Testing Process Overview

» Usage distribution models; other software, earlier versions,
analysis

 Construct Markov usage chain / probability matrix

« Computations of I1 (proportion of time spent in each state),
n (number of states visited before a given state is
reached), and s (number of tests needed to reach a state).

- Random test generation (some design required here to
deal with constraints)

 Test execution and test chain generation, including failure
states

» Calculations of R (reliability), MTBF (mean time between

failures), and D (divergence of test chain from usage chain)
6/18/2007 © 2007, Spencer Rugaber 28

6/18/2007

Testing Example

COBOL / SF parser generator
Four increments; 120 random tests
Last 115 executions correct

12 failures in first five executions
3.9 faults / KLOC

No new failures in four years of use

© 2007, Spencer Rugaber

29

Usage Model For Unix Mall

~a|~b|~c
~d|~f|~i|
~mj~plr
~<|[~R|~s|
~tl~w~
~ |~

~ |21

Compose

Ad|~q|~Q|~x/.00"

Termination

Invocatior

\nl|+|n/.68 -.01

6/18/2007 © 2007, Spencer Rugaber 30

Results Of Independent
Empirical Evaluation

* 15 3-person teams; 10 of them used
Cleanroom

« 6/10 delivered 91% of functionality

« Requirements better met and less failures
 More comments, less dense control flow

» Better adherence to schedule

» Developers expressed satisfaction with

Process
6/18/2007 © 2007, Spencer Rugaber

31

Results

e Defects: 2-5/KLOC versus 10-30/
KLOC for debugging

* Productivity: 3 -5 x improvement in
verification over debugging

 Reliability: statistical usage testing 20 x
as effective as coverage testing

6/18/2007 © 2007, Spencer Rugaber

32

Cleanroom Tools

* Test case generator
* Reliability analysis package
— Spreadsheet

* Verification-based inspection syntax
analyzer

— Script for inspection

 Management assistant
— Reports on process

6/18/2007 © 2007, Spencer Rugaber

33

