
6/18/2007  2007, Spencer Rugaber 1

Cleanroom Software Engineering

• Harlan Mills (Linger, Dyer, Poore), IBM, 1980

• Analogy with electronic component
manufacture

• Use of statistical process control features

• Certified software reliability

• Improved productivity; zero defects at
delivery

6/18/2007  2007, Spencer Rugaber 2

Key Features

• Usage scenarios; statistical modeling

• Incremental development and release

• Separate development and
acceptance testing

• No unit testing or debugging

– Instead, formal reviews with verification
conditions

6/18/2007  2007, Spencer Rugaber 3

Cleanroom Projects

6/18/2007  2007, Spencer Rugaber 4

Defect Rates

• Traditional

– Unit testing: 25 faults / KLOC

– System testing: 25 / KLOC

– Inspections: 20 - 50 / KLOC

• Cleanroom

– < 3.5 / KLOC delivered

– Average 2.7 / KLOC between first
execution and delivery

6/18/2007  2007, Spencer Rugaber 5

Basic Technologies

1. Incremental Development

2. Box-Structured Specification

3. Function-theoretic
verification

4. Statistical usage testing

6/18/2007  2007, Spencer Rugaber 6

1. Incremental Development

• Typical system < 100KLOC

• Increment: 2 - 15KLOC

• Team size < 14

• Each increment End-to-End

• Overlapped development of increments

• 12 - 18 weeks from beginning of
specification to end of test

• Partitioning is difficult and critical

6/18/2007  2007, Spencer Rugaber 7

2. Formal Specification

• Box-structured design

– Black box: stimulus-response

– State box: formal model of system state

– Clear box: hierarchical refinement

• Program functions

• Verification properties of control

structures

6/18/2007  2007, Spencer Rugaber 8

Box-Structured
Specification and Design

• Black Box: stimulus / condition / response;
organized into tasks; Z has been used for
specification; top-down, stepwise refinement;
concurrency supported

• State Box: data / history view; model oriented

• Clear Box: procedural control (sequence,
alternation, iteration, concurrent; contains
nested black boxes)

• Box Definition language

6/18/2007  2007, Spencer Rugaber 9

State Boxes
(Model-based Formal Specification)

• Description of system state in terms of domains
(data structures without memory limitations

– Sets, sequences, records, lists, maps, relations

• Specification of state invariant

• Specification of operations

– Name

– Arguments with domains

– Validity condition (precondition)

– Effect on state (postcondition)

• Each operation must maintain the invariant

6/18/2007  2007, Spencer Rugaber 10

3. Function-Theoretic Verification

• In Cleanroom, constructed programs can be
checked by a parser for syntax errors, but
may not be executed by the developer

– No debugging ⇒ cheap and predictable

• Verification is performed by a team review
driven by a set of verification conditions
– Questions to ask about the program code

– Specific questions are asked about each kind of
control structure

• Productivity: 3 - 5 x improvement in
verification over debugging

6/18/2007  2007, Spencer Rugaber 11

Formal Inspections

• Although program proving is always an option,

this involves intensive work requiring

mathematical sophistication

• An alternative, used by Cleanroom software

engineering, is to structure a team code

inspection in terms of program functions and

verification conditions and then undertake an

informal review confirming all verification

conditions are satisfied

6/18/2007  2007, Spencer Rugaber 12

Functional Verification Steps

1. Starting condition: program is specified by pre and post conditions

2. Program is parsed into prime programs

– Prime program decomposition: parse program control flow into nested
single entry/exit constructs (SESEs)

– Usual SESEs are sequence, conditional, iteration

3. Proceeding top down, determine the program function for all
SESEs

– Program function: Description of the function of a prime program

– Assertion placed before and after each SESE

4. Define verification conditions for each program point

– Verification Conditions: things to check for each SESE

5. Inspect, answering all verification conditions

6/18/2007  2007, Spencer Rugaber 13

• Conditions under which the program can

legally execute (preconditions)

• Expression of the effect of program execution

on the state of the system (postconditions)

• Expressed in terms of the program's input

arguments, return value, instance variables,

global variables, and side effects on the

environment (disk writes, printing, etc.) but

not local program variables

Program Function

6/18/2007  2007, Spencer Rugaber 14

Program Parse

• Modern programming languages support the concept of

nested blocks

– A block is normally enclosed in braces or keyword pairs
(begin-end)

• In structured programs (programs without GOTO

statements), the nesting is always well formed

– That is, there is only ever one way for control to enter the block

and one way to exit. That is, they have the property of being

single-entry, single exit (SESE)

– Programs with GOTOs can be handled using special methods

• The process of determining the SESEs for a program

involves parsing its control flow graph.

6/18/2007  2007, Spencer Rugaber 15

Typical

SESEs

6/18/2007  2007, Spencer Rugaber 16

Composition of SESEs

• Each SESE can be thought of as being

itself a small program with its own program

function

• The overall program function is the logical

composition of the program functions of its

constituent SESEs

• The lowest level SESE is the single

assignment statement

6/18/2007  2007, Spencer Rugaber 17

Verification Conditions
• If we were proving a program correct, we would
construct the proof by composing the proofs of
each of the SESEs

• Instead of a proof, Cleanroom uses an informal
review that examines each program statements
to determine its logical validity

• In particular, each type of statement has a set of
questions that should be asked about it every
time that it occurs in the program

• There are three ways of composing SESEs
– Sequence, conditional and iteration

6/18/2007  2007, Spencer Rugaber 18

Sequence
• The simplest control structure is a sequence

of two other statements or control structures

• There is one verification condition per

sequence:

– Do the constituent statements together accomplish

the sequence’s goal?

• This idea can readily be extended to three or

more constituent statements

6/18/2007  2007, Spencer Rugaber 19

Sequential Composition

1. Is the post assertion of the sequence

equivalent to the logical composition of

the first part followed by second part?

6/18/2007  2007, Spencer Rugaber 20

Conditional

• An if-then-else has two arms

– Does each arm acting by itself accomplish the

control structure’s post condition, assuming the

control structure's precondition and that the tested

condition is true (or false)?

• If-then is treated as if-then-else with a

null arm

6/18/2007  2007, Spencer Rugaber 21

Conditional
2.Does taking the true branch imply the

post assertion?

– The predicate of the conditional can be
assumed to be true

3.Does taking the false branch imply the

post assertion?

– The predicate can be assumed to be false

6/18/2007  2007, Spencer Rugaber 22

Iteration

• There are three questions to ask about an

iterative construct such as a while loop:

– Does it terminate in all circumstances?

– Does it accomplish its purpose when it does not

execute?

– Does it accomplish its purpose when its body is

executed followed by its own execution?

• for loops and repeat loops can be defined

in terms of while loops

6/18/2007  2007, Spencer Rugaber 23

Iteration

4.Does the loop terminate?

5.If the predicate is false, is the post
assertion equivalent to the pre assertion?

6.If the predicate is true, is the post
assertion of the loop equivalent to the post
assertion of the body followed by the post
assertion of the loop?

– Recursive!

– You may assume the predicate is true

6/18/2007  2007, Spencer Rugaber 24

Implications

• As teams become more experience in
Cleanroom, then begin to write their
programs more directly

• This typically results in very small
program segments with few control
structures each

• Example: 3300 lines ⇒ 600 control
structures, 1000 correctness
conditions

6/18/2007  2007, Spencer Rugaber 25

4. Statistical Usage Testing

• Certification of reliability

• Process control

• Cost-effective orientation

• Guidelines for test completion (desired
reliability reached) or redesign (too many
failures found)

• Stratification mechanism for dealing with
critical situations

• But questions exist on how to feed back the
results of testing to the development team

6/18/2007  2007, Spencer Rugaber 26

Cost-Effective Testing

6/18/2007  2007, Spencer Rugaber 27

Testing Process
• Usage distribution models

– From competitors, earlier versions, analysis

• Markov usage chain

– State transition probability matrix

• Statistics

− Π (proportion of time spent in each state)

– n (number of states visited before a given state is reached)

– s (number of tests needed to reach a state).

• Random test generation

– Design required

• Test execution and test chain generation, including failure states

• Statistics

– R (reliability)

– MTBF (mean time between failures)

– D (divergence of test chain from usage chain)

6/18/2007  2007, Spencer Rugaber 28

Testing Process Overview

• Usage distribution models; other software, earlier versions,
analysis

• Construct Markov usage chain / probability matrix

• Computations of Π (proportion of time spent in each state),
n (number of states visited before a given state is
reached), and s (number of tests needed to reach a state).

• Random test generation (some design required here to
deal with constraints)

• Test execution and test chain generation, including failure
states

• Calculations of R (reliability), MTBF (mean time between
failures), and D (divergence of test chain from usage chain)

6/18/2007  2007, Spencer Rugaber 29

Testing Example

• COBOL / SF parser generator

• Four increments; 120 random tests

• Last 115 executions correct

• 12 failures in first five executions

• 3.9 faults / KLOC

• No new failures in four years of use

6/18/2007  2007, Spencer Rugaber 30

Usage Model For Unix Mail

6/18/2007  2007, Spencer Rugaber 31

Results Of Independent
Empirical Evaluation

• 15 3-person teams; 10 of them used
Cleanroom

• 6/10 delivered 91% of functionality

• Requirements better met and less failures

• More comments, less dense control flow

• Better adherence to schedule

• Developers expressed satisfaction with
process

6/18/2007  2007, Spencer Rugaber 32

Results

• Defects: 2 - 5 / KLOC versus 10-30 /
KLOC for debugging

• Productivity: 3 - 5 ×××× improvement in
verification over debugging

• Reliability: statistical usage testing 20 ××××
as effective as coverage testing

6/18/2007  2007, Spencer Rugaber 33

Cleanroom Tools

• Test case generator

• Reliability analysis package

− Spreadsheet

• Verification-based inspection syntax
analyzer

− Script for inspection

• Management assistant

− Reports on process

